Horizontal gene transfer from human endothelial cells to rat cardiomyocytes after intracoronary transplantation.
نویسندگان
چکیده
AIMS Recent studies suggested that human umbilical vein endothelial cells (HUVECs) transdifferentiate into cardiomyocytes and smooth muscle cells in vitro. To test the functional relevance of this observation, we examined the transdifferentiation potential of HUVECs in vivo after intracoronary cell application in Wistar rats. METHODS AND RESULTS SPECT measurements (single photon emission computed tomography) revealed that 18% of (111)In-labelled HUVECs infused by intracoronary delivery stably transplanted to the rat heart. For long-term tracking, HUVECs-expressing enhanced green fluorescent protein (EGFP) were infused. Two days following transplantation, HUVECs were positive for caspase-3. Within 3 days, EGFP was associated with individual cardiomyocytes. No labelling of endothelial and smooth muscle cells was observed. The total number of EGFP-labelled cardiomyocytes accounted for 58% of all initially trapped cells. These EGFP positive cells stained negatively for human mitochondrial proteins, but were positive for rat monocarboxylate transporter-1 protein (MCT-1). Furthermore, EGFP-mRNA was detected in these cells by single-cell RT-PCR (reverse transcription followed by polymerase chain reaction). After 21 days, EGFP positive cells were no longer observed. To investigate the underlying mechanism, we generated in vitro apoptotic bodies from EGFP-labelled HUVECs and found them to contain the genetic information for EGFP. Co-incubation of apoptotic bodies with neonatal rat cardiomyocytes caused cardiomyocytes to express EGFP. CONCLUSION When transplanted into the rat heart by efficient intracoronary delivery, EGFP-expressing HUVECs cause the exclusive but transient labelling of cardiomyocytes. Our in vivo findings suggest that it is not cell fusion and/or transdifferentiation that occurs under these conditions but rather a horizontal gene transfer of the EGFP marker via apoptotic bodies from endothelial cells to cardiomyocytes.
منابع مشابه
INHIBITION OF WNT3A DIMINISHED ANGIOGENIC DIFFERENTIATION CAPACITY OF RAT CARDIAC PROGENITOR CELLS
Background & Aims: Myocardial infarction is a leading cause of human mortality in industrialized and developing societies. Limited restorative ability of of cardiomyocytes after ischemic changes can causes extensive damage lead to prominent chronic heart failure. At present, the application of certain drugs is touted as one of the main available approaches to inhibit the spread of the lesion an...
متن کاملEffect of Human Umbilical Cord Mesenchymal Stem Cells Transplantation on Nerve Fibers of A Rat Model of Endometriosis
Background Endometriosis is a common, benign, oestrogen-dependent, chronic gynaecological disorder associated with pelvic pain and infertility. Some researchers have identified nerve fibers in endometriotic lesions in women with endometriosis. Mesenchymal stem cells (MSCs) have attracted interest for their possible use for both cell and gene therapies because of their capacity for self-renewal ...
متن کاملGene transfer of human neuregulin-1 attenuates ventricular remodeling in diabetic cardiomyopathy rats
Neuregulin-1 (NRG-1) is a cardioactive growth factor released from endothelial cells. However, the effect of NRG-1 on ventricular remodeling in diabetic cardiomyopathy (DCM) remains unclear. The aim of the present study was to investigate the pathophysiological role of NRG-1 in a rat model of DCM. Rat cardiac microvascular endothelial cells (CMECs) were transfected with human NRG-1 (hNRG-1) len...
متن کاملAre Stem Cells the next Therapeutic Tool for Heart Repair?
Cardiovascular disease remains the leading cause of morbidity and mortality in the United States and Europe. In recent years, the understanding that regenerative processes exist at the level of the myocardium, has placed stem cell research at center stage in cardiology. A stem cell is a cell that has the ability to divide (self replicate) for indefinite periods often throughout the life of the ...
متن کاملHyaluronan Mixed Esters of Butyric and Retinoic Acid Affording Myocardial Survival and Repair without Stem Cell Transplantation*
Possible cardiac repair by adult stem cell transplantation is currently hampered by poor cell viability and delivery efficiency, uncertain differentiating fate in vivo, the needs of ex vivo cell expansion, and consequent delay in transplantation after the onset of heart attack. By the aid of magnetic resonance imaging, positron emission tomography, and immunohistochemistry, we show that injecti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cardiovascular research
دوره 77 3 شماره
صفحات -
تاریخ انتشار 2008